College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.1 - Quadratic Functions and Models - 3.1 Exercises - Page 289: 57

Answer

$50$ trees per acre.

Work Step by Step

We can rewrite the function in our usual form: $A(n)=-9n^2+900n$ In this function, $a=-9$, $b=900$, $c=0$. The maximum number of apples per acre occurs at: $n=\frac{-b}{2a}=\frac{-900}{-18}=50$ (calculating maximum yield is unnecessary). In conclusion, to reach the maximum number of apples per acre, $50$ trees should be planted per acre.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.