Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.6 - Solving Nonlinear Systems of Equations - Monitoring Progress - Page 528: 7

Answer

The solutions are $(\sqrt{5},5+\sqrt{5})$ and $(-\sqrt{5},5-\sqrt{5})$.

Work Step by Step

The given system is $y=x^2+x$ ...... (1) $y=x+5$ ...... (2) Subtract equation (2) from equation (1). $\Rightarrow y-y=x^2+x-(x+5)$ $\Rightarrow y-y=x^2+x-x-5$ Simplify. $\Rightarrow 0=x^2-5$ Add $5$ to each side. $\Rightarrow 0+5=x^2-5+5$ Simplify. $\Rightarrow 5=x^2$ Take square root on each side. $\Rightarrow \pm\sqrt{5}=x$ Substitute $\sqrt{5}$ for $x$ in equation (2). $\Rightarrow y=\sqrt{5}+5$ Simplify. $\Rightarrow y=5+\sqrt{5}$ Substitute $-\sqrt{5}$ for $x$ in equation (2). $\Rightarrow y=-\sqrt{5}+5$ Simplify. $\Rightarrow y=5-\sqrt{5}$ Hence, the solutions are $(\sqrt{5},5+\sqrt{5})$ and $(-\sqrt{5},5-\sqrt{5})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.