Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.6 - Solving Nonlinear Systems of Equations - Monitoring Progress - Page 526: 3

Answer

The solutions are $(2,-9)$ and $(8,9)$.

Work Step by Step

The given system is $y=3x-15$ ...... (1) $y=\frac{1}{2}x^2-2x-7$ ...... (2) Graph each equation. The point of intersections are $A=(2,-9)$ and $B=(8,9)$. Check: $(x,y)=(2,-9)$ Equation (1). $\Rightarrow y=2x-5$ $\Rightarrow -9=3(2)-15$ $\Rightarrow -9=6-15$ $\Rightarrow -9=-9$ True. Equation (2). $\Rightarrow y=\frac{1}{2}x^2-2x-7$ $\Rightarrow -9=\frac{1}{2}(2)^2-2(2)-7$ $\Rightarrow -9=2-4-7$ $\Rightarrow -9=2-11$ $\Rightarrow -9=-9$ True. Check: $(x,y)=(8,9)$ Equation (1). $\Rightarrow y=2x-5$ $\Rightarrow 9=3(8)-15$ $\Rightarrow 9=24-15$ $\Rightarrow 9=9$ True. Equation (2). $\Rightarrow y=\frac{1}{2}x^2-2x-7$ $\Rightarrow 9=\frac{1}{2}(8)^2-2(8)-7$ $\Rightarrow 9=32-16-7$ $\Rightarrow 9=32-23$ $\Rightarrow 9=9$ True. Hence, the solutions are $(2,-9)$ and $(8,9)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.