Answer
$x=2$ and $x=4$
Work Step by Step
The given equation is
$x^2-6x+8=0$
From the given graph.
The $x-$intercepts are $2$ and $4$.
Check $x=2$.
$\Rightarrow x^2-6x+8=0$
$\Rightarrow (2)^2-6(2)+8=0$
$\Rightarrow 4-12+8=0$
$\Rightarrow 12-12=0$
$\Rightarrow 0=0$
True.
Check $x=4$.
$\Rightarrow x^2-6x+8=0$
$\Rightarrow (4)^2-6(4)+8=0$
$\Rightarrow 16-24+8=0$
$\Rightarrow 24-24=0$
$\Rightarrow 0=0$
True.
Hence, the solutions are $x=2$ and $x=4$.