Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Monitoring Progress - Page 481: 12

Answer

$\frac{c^2 d \sqrt[3]{25c}}{4}$.

Work Step by Step

The given expression is $=\sqrt[3]{\frac{25c^7d^3}{64}}$ Use quotient property of cube roots. $=\frac{\sqrt[3]{25c^7d^3}}{\sqrt[3]{64}}$ Factor as cube terms. $=\frac{\sqrt[3]{c^6\cdot d^3\cdot 25c}}{\sqrt[3]{64}}$ Use prodcut property of cube roots. $=\frac{\sqrt[3]{c^6}\cdot \sqrt[3]{d^3}\cdot \sqrt[3]{25c}}{\sqrt[3]{64}}$ Use $64=4^3$. $=\frac{\sqrt[3]{c^6}\cdot \sqrt[3]{d^3}\cdot \sqrt[3]{25c}}{\sqrt[3]{4^3}}$ Simplify. $=\frac{c^2\cdot d\cdot \sqrt[3]{25c}}{4}$ $=\frac{c^2 d \sqrt[3]{25c}}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.