Answer
Vertex: $(4,0)$.
Axis of symmetry: $x=4$
Work Step by Step
The quadratic function in the form $y=a(x-h)^2+k$ has the vertex $(h,k)$ and the axis of symmetry $x=h$.
$$f(x)=-\frac18(x-4)^2$$ Rewrite as:
$$f(x)=\frac18(x-4)^2+0$$ Therefore $h=4$, $k=0$.
The vertex is: $$(h,k)=(4,0).$$
The axis of symmetry is: $$x=4.$$