Answer
$(h+2)(h+3)(h-3)$.
Work Step by Step
The given polynomial is
$=h^3+2h^2-9h-18$
Group the terms.
$=(h^3+2h^2)+(-9h-18)$
Factor each group.
$=h^2(h+2)-9(h+2)$
Factor out $(h+2)$.
$=(h+2)(h^2-9)$
Write the the polynomial as $a^2-b^2$.
$=(h+2)(h^2-3^2)$
Use difference of two square pattern
$a^2-b^2=(a+b)(a-b)$.
We have $a=h$ and $b=3$.
$=(h+2)(h+3)(h-3)$
Hence, the factor of the given polynomial is $(h+2)(h+3)(h-3)$.