Answer
$(2s+3)(s+3)(s-3)$.
Work Step by Step
The given polynomial is
$=2s^3-27-18s+3s^2$
$=2s^3+3s^2-18s-27$
Group the terms.
$=(2s^3+3s^2)+(-18s-27)$
Factor each group.
$=s^2(2s+3)-9(2s+3)$
Factor out $(2s+3)$.
$=(2s+3)(s^2-9)$
Write the the polynomial as $a^2-b^2$.
$=(2s+3)(s^2-3^2)$
Use difference of two square pattern
$a^2-b^2=(a+b)(a-b)$.
We have $a=s$ and $b=3$.
$=(2s+3)(s+3)(s-3)$
Hence, the complete factor of the polynomial is $(2s+3)(s+3)(s-3)$.