Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 6 - Exponential Functions and Sequences - Chapter Review - Page 349: 17

Answer

The function represents exponential decay and the rate of decay is $16\%$.

Work Step by Step

The given function is $\Rightarrow f(t)=6(0.84)^{t-4}$ Use $(a)^{m-n}=\frac{a^m}{a^n}$. $\Rightarrow f(t)=6\frac{(0.84)^{t}}{(0.84)^{4}}$ $\Rightarrow f(t)=\frac{6}{(0.84)^{4}}(0.84)^{t}$ $\Rightarrow f(t)=\frac{6}{(0.84)^{4}}(1-0.16)^{t}$ The function is of the form $y=a(1-r)^t$, where $1-r<1$. So, it represents exponential decay. Decay factor is $\Rightarrow 1-r=0.84$ Add $r-0.84$ to each side. $\Rightarrow 1-r+r-0.84=0.84+r-0.84$ Simplify. $\Rightarrow 0.16=r$. $\Rightarrow 16\%=r$. Hence, the function represents exponential decay and the rate of decay is $16\%$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.