Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 11 - Data Analysis and Displays - 11.1 - Measures of Center and Variation - Exercises - Page 591: 21

Answer

Range $=2.0$ Standard Deviation $=0.65$

Work Step by Step

$$\text{Solution}$$ Given Information: Data Set ⟹ $(0.5, 2.0, 2.5, 1.5, 1.0, 1.5) $ Total Number of Items in Data Set $n=6$ Formula: Range = Highest Value - Lowest Value Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ Mean = $\frac {\text{Sum of All Values}}{\text{Total Number of Values}}$ To Find: a)Range b)Standard Deviation Answer: (a) To Find Range: Re-Arrange the Given Data Set in Ascending Order $$0.5, 1.0, 1.5, 1.5, 2.0, 2.5$$ $$\text{Range = Highest Value - Lowest Value}$$ $$ \text{Range} = 2.5-0.5$$ $$\text{Range} =2.0$$ (b) To Find Standard Deviation: Re-Arrange the Given Data Set in Ascending Order $$0.5, 1.0, 1.5, 1.5, 2.0, 2.5 $$ Mean = $\frac{0.5+ 1.0+ 1.5+ 1.5+ 2.0+ 2.5 }{6}$ Mean = $\frac{9}{6}$ Mean= $\mu$ = $1.5 $ $x_i=0.5, 1.0, 1.5, 1.5, 2.0, 2.5$ $|x_i-\mu|= 1.0, 0.5 ,0, 0 ,0.5, 0.25, 1 $ $|x_i-\mu|^2$= $1, 0.25, 0, 0, 0.25 ,1 $ Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ $=\sigma $ = $\sqrt{\frac{1+ 0.25+ 0+ 0+ 0.25 +1}{6}}$ $=\sigma $= $\sqrt{\frac{2.5}{6}}$ $=\sigma $ = $\sqrt {0.42}$ $=\sigma $ = $0.65$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.