Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 11 - Data Analysis and Displays - 11.1 - Measures of Center and Variation - Exercises - Page 591: 19

Answer

(a)Range $=25$ (b)Standard Deviation $=9.27$

Work Step by Step

$$\text{Solution}$$ Given Information: Data Set ⟹ $(40, 35, 45, 55, 60)$ Total Number of Items in Data Set $n=5$ Formula: Range = Highest Value - Lowest Value Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ Mean = $\frac {\text{Sum of All Values}}{\text{Total Number of Values}}$ To Find: Range Standard Deviation Answer: (a) To Find Range: Re-Arrange the Given Data Set in Ascending Order $$35, 40,45,55,60$$ $$\text{Range = Highest Value - Lowest Value}$$ $$ \text{Range} = 60-35$$ $$\text{Range} =25$$ (b) To Find Standard Deviation: Re-Arrange the Given Data Set in Ascending Order $$35, 40,45,55,60$$ Mean = $\frac{35+40 +45 +55 +60}{5}$ Mean = $\frac{3235}{5}$ Mean= $\mu$ = $47 $ $x_i=35,40,45,55,60 $ $|x_i-\mu|= 12,7,2,8,13 $ $|x_i-\mu|^2$= $144,49,4,64,169 $ Standard Deviation $=\sigma =$ $\frac{\sqrt {\Sigma (|x_i- \mu|)^2}}{n}$ $=\sigma $ = $\sqrt{\frac{144+49+4+64+169}{5}}$ $=\sigma $= $\sqrt{\frac{430}{5}}$ $=\sigma $ = $\sqrt {86}$ $=\sigma $ = $9.27$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.