Answer
$sec^{2}(x)tan^{2}(x) + sec^{2}(x) = sec^{4}(x)$
$sec^{2}(x) (tan^{2}(x) + 1)$ = $sec^{4}(x)$
$sec^{2}(x)$$sec^{2}(x)$ = $sec^{4}(x)$
$sec^{4}(x) = sec^{4}(x)$
Work Step by Step
Note: $tan^{2}(x) + 1 = sec^{2}(x)$
$sec^{2}(x)tan^{2}(x) + sec^{2}(x) = sec^{4}(x)$
Factor the expression:
$sec^{2}(x) (tan^{2}(x) + 1)$ = $sec^{4}(x)$
Using the above note:
$sec^{2}(x)$$sec^{2}(x)$ = $sec^{4}(x)$
$sec^{4}(x) = sec^{4}(x)$