Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.2 - Right Triangle Trigonometry - 6.2 Exercises - Page 441: 18

Answer

$sin~\theta=\frac{opp}{hyp}=\frac{4}{\sqrt {41}}=\frac{4\sqrt {41}}{41}$ $cos~\theta=\frac{adj}{hyp}=\frac{5}{\sqrt {41}}=\frac{5\sqrt {41}}{41}$ $cot~\theta=\frac{adj}{opp}=\frac{5}{4}$ $csc~\theta=\frac{hyp}{opp}=\frac{\sqrt {41}}{4}$ $sec~\theta=\frac{hyp}{adj}=\frac{\sqrt {41}}{5}$

Work Step by Step

$tan~\theta=\frac{opp}{adj}$ $\frac{4}{5}=\frac{opp}{adj}$ Use the pythagorean theorem to find the opposite side of $\theta$ $hyp^2=4^2+5^2$ $hyp^2=16+25=41$ $hyp=\sqrt {41}$ $sin~\theta=\frac{opp}{hyp}=\frac{4}{\sqrt {41}}=\frac{4\sqrt {41}}{41}$ $cos~\theta=\frac{adj}{hyp}=\frac{5}{\sqrt {41}}=\frac{5\sqrt {41}}{41}$ $cot~\theta=\frac{adj}{opp}=\frac{5}{4}$ $csc~\theta=\frac{hyp}{opp}=\frac{\sqrt {41}}{4}$ $sec~\theta=\frac{hyp}{adj}=\frac{\sqrt {41}}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.