Answer
$sin~θ=\frac{7}{25}$
$cos~θ=\frac{24}{25}$
$tan~θ=\frac{7}{24}$
$csc~θ=\frac{25}{7}$
$sec~θ=\frac{25}{24}$
$cot~θ=\frac{24}{7}$
Work Step by Step
First, let's evaluate the hypotenuse:
$(hyp)^2=(opp)^2+(adj)^2$
$hyp=\sqrt {7^2+24^2}=\sqrt {625}=25$
$sin~θ=\frac{opp}{hyp}=\frac{7}{25}$
$cos~θ=\frac{adj}{hyp}=\frac{24}{25}$
$tan~θ=\frac{opp}{adj}=\frac{7}{24}$
$csc~θ=\frac{hyp}{opp}=\frac{25}{7}$
$sec~θ=\frac{hyp}{adj}=\frac{25}{24}$
$cot~θ=\frac{adj}{opp}=\frac{24}{7}$