Answer
(a) $P=Ae^{-rt}$
(b) $t=\ln\sqrt[r] {\frac{A}{P}}$
Work Step by Step
(a)
$A=Pe^{rt}$
$P=\frac{A}{e^{rt}}=Ae^{-rt}$
(b)
$A=Pe^{rt}$
$\ln A=\ln (Pe^{rt})$
$\ln A=\ln P+\ln e^{rt}$
$\ln A-\ln P=rt$
$\ln\frac{A}{P}=rt$
$t=\frac{1}{r}\ln\frac{A}{P}$
$t=\ln\sqrt[r] {\frac{A}{P}}$