Answer
$y=5 e^{\frac{-\ln 5}{4}x} =5e^{-0.4x}$
Work Step by Step
We have $y=ae^{bx}$
$ae^{b(0)}=5$ and $ae^{4b}=1$
Further, we have $ae^{0}=5$
$ \implies a=5$
and $5e^{4b} =1 \implies e^{4b} =\dfrac{1}{5}$
Take the $\log$ on each side.
$\ln e^{4b} =\ln \dfrac{1}{5}$
or, $4b \approx -1.6094$
or, $ b \approx -0.4$
Now, the exponential decay model is: $y=5 e^{\frac{-\ln 5}{4}x} =5e^{-0.4x}$