Answer
$x=2$
Work Step by Step
$\log_2x+\log_2(x+2)=\log_2(x+6)$
$\log_2[x(x+2)]=\log_2(x+6)$
$\log_2(x^2+2x)=\log_2(x+6)$
Using the One-to-One Property:
$x^2+2x=x+6$
$x^2+x-6=0~~$ (Make: $x=3x-2x$)
$x^2+3x-2x-6=0$
$x(x+3)-2(x+3)=0$
$(x-2)(x+3)=0$
$x-2=0$
$x=2$
$x+3=0$
$x=-3$. But, the $-3$ does not lie in the domain of $\ln x$. So, it is not a valid solution.