Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 5 - 5.4 - Exponential and Logarithmic Equations - 5.4 Exercises - Page 395: 60

Answer

$x=2$

Work Step by Step

$\log_2x+\log_2(x+2)=\log_2(x+6)$ $\log_2[x(x+2)]=\log_2(x+6)$ $\log_2(x^2+2x)=\log_2(x+6)$ Using the One-to-One Property: $x^2+2x=x+6$ $x^2+x-6=0~~$ (Make: $x=3x-2x$) $x^2+3x-2x-6=0$ $x(x+3)-2(x+3)=0$ $(x-2)(x+3)=0$ $x-2=0$ $x=2$ $x+3=0$ $x=-3$. But, the $-3$ does not lie in the domain of $\ln x$. So, it is not a valid solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.