Answer
$x=1.259$
Work Step by Step
$e^{x+1}=2^{x+2}$
$e^x·e=2^x·2^2$
$\frac{e^x}{2^x}=\frac{4}{e}$
$(\frac{e}{2})^x=\frac{4}{e}$
$\log_{\frac{e}{2}}(\frac{e}{2})^x=\log_{\frac{e}{2}}\frac{4}{e}$
$x=\frac{\ln\frac{4}{e}}{\ln\frac{e}{2}}=1.259$