Answer
False.
$f(x-2)\ne f(x)-f(2)$
Work Step by Step
$f(x)-f(2)=\ln x-\ln 2$
Using the Quotient Property:
$f(x)-f(2)=\ln x-\ln 2=\ln\frac{x}{2}=f(\frac{x}{2})$
Due to the One-to-One Property:
$\ln a=\ln b$ if and only if $a=b$
So: $f(x-2)\ne f(\frac{x}{2})=f(x)-f(2)$