Answer
$f(x)=x^3-10x^2+12x+72$
Work Step by Step
One of the zeroes must be a repeated zero so that we can find a polynomial of degree 3. Let's make $x=6$ a repeated zero:
$f(x)=a[x-(-2)](x-6)^2=a(x+2)(x^2-12x+36)=a(x^3-10x^2+12x+72)$
$a$ can be any value. If $a=1$:
$f(x)=x^3-10x^2+12x+72$