Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.7 - Inverse Functions - 2.7 Exercises - Page 228: 12

Answer

$f^{-1}(x)=\sqrt{x-2}$

Work Step by Step

We are given the function: $f(x)=x^2+2,x\geq 0$ Determine the inverse of $f$: $y=x^2+2$ Interchange $x$ and $y$: $x=y^2+2$ $y^2=x-2$ $y=\sqrt {x-2}$ $f^{-1}(x)=\sqrt{x-2}$ Compute $f\circ f^{-1}$ and $f^{-1}\circ f$: $(f\circ f^{-1})(x)=f(f^{-1}(x))=f(\sqrt{x-2})=(\sqrt{x-2})^2+2=x-2+2=x$ $(f^{-1}\circ f)(x)=f^{-1}\left(x^2+2\right)=\sqrt{x^2+2-2}=\sqrt{x^2}=x$ Thus, the functions are inverses.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.