Answer
a) -22; b) -85; c) 6; d) -29
Work Step by Step
We are given the function:
$g(x)=-7[[x+4]]+6$, where $[[x]]$ denotes the greatest integer less than or equal to $x$.
a) $g\left(\dfrac{1}{8}\right)=-7\left[\left[\dfrac{1}{8}+4\right]\right]+6=-7\left[\left[4\dfrac{1}{8}\right]\right]+6=-7(4)+6=-22$
b) $g(9)=-7[[9+4]]+6=-7[[13]]+6=-7(13)+6=-85$
c) $g(-4)=-7[[-4+4]]+6=-7[[0]]+6=-7(0)+6=6$
d) $g\left(\dfrac{3}{2}\right)=-7\left[\left[\dfrac{3}{2}+4\right]\right]+6=-7\left[\left[5\dfrac{1}{2}\right]\right]+6=-7(5)+6=-29$