Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.4 - A Library of Parent Functions - 2.4 Exercises - Page 203: 29

Answer

a) 1; b) -4; c) 3; d) 2

Work Step by Step

We are given the function: $k(x)=[[2x+1]]$ denotes the greatest integer less than or equal to $2x+1$. a) $k\left(\dfrac{1}{3}\right)=\left[\left[2\left(\dfrac{1}{3}\right)+1\right]\right]=\left[\left[\dfrac{5}{3}\right]\right]=1$ b) $k\left(-2.1\right)=[[2(-2.1)+1]]=[[-3.2]]=-4$ c) $k(1.1)=[[2(1.1)+1]]=[[3.2]]=3$ d) $k\left(\dfrac{2}{3}\right)=\left[\left[2\left(\dfrac{2}{3}\right)+1\right]\right]=\left[\left[\dfrac{7}{3}\right]\right]=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.