Answer
$(-1,-5)$, $(0,-\frac{19}{4})$, $(7,-3)$
Work Step by Step
Use the point-slope form:
$y-y_1=m(x-x_1)$, where $m$ is the slope and $(x_1,y_1)$ is a point on the line.
$y-(-4)=\frac{1}{4}(x-3)$
$y+4=\frac{1}{4}x-\frac{3}{4}$
$y=\frac{1}{4}x-\frac{19}{4}$
Now, choose three different values for $x$ to find three different points on the line. For example, $x=-1$, $x=0$ and $x=7$:
$x=-1$:
$y=\frac{1}{4}(-1)-\frac{19}{4}=-\frac{20}{4}=-5$
Point: $(-1,-5)$
$x=0$:
$y=\frac{1}{4}(0)-\frac{19}{4}=-\frac{19}{4}$
Point: $(0,-\frac{19}{4})$
$x=7$:
$y=\frac{1}{4}(7)-\frac{19}{4}=-\frac{12}{4}=-3$
Point: $(7,-3)$