Answer
$(0,\frac{19}{3})$, $(7,4)$, $(10,3)$
Work Step by Step
Use the point-slope form:
$y-y_1=m(x-x_1)$, where $m$ is the slope and $(x_1,y_1)$ is a point on the line.
$y-5=-\frac{1}{3}(x-4)$
$y-5=-\frac{1}{3}x+\frac{4}{3}$
$y=-\frac{1}{3}x+\frac{19}{3}$
Now, choose three different values for $x$ to find three different points on the line. For example, $x=0$, $x=7$ and $x=10$:
$x=0$:
$y=-\frac{1}{3}(0)+\frac{19}{3}=\frac{19}{3}$
Point: $(0,\frac{19}{3})$
$x=7$:
$y=-\frac{1}{3}(7)+\frac{19}{3}=\frac{12}{3}=4$
Point: $(7,4)$
$x=10$:
$y=-\frac{1}{3}(10)+\frac{19}{3}=\frac{9}{3}=3$
Point: $(10,3)$