Answer
True.
$\displaystyle \sum_{i=1}^{5} (i^3+2i)=\displaystyle \sum_{i=1}^{5}i^3+\displaystyle \sum_{i=1}^{5}2i$
Work Step by Step
$\displaystyle \sum_{i=1}^{5} (i^3+2i)=1^3+2(1)+2^3+2(2)+3^3+2(3)+4^3+2(4)+5^3+2(5)=(1^3+2^3+3^3+4^3+5^3)+[2(1)+2(2)+2(3)+2(4)+2(5)]=\displaystyle \sum_{i=1}^{5}i^3+\displaystyle \sum_{i=1}^{5}2i$