Answer
The inverse of the matrix does not exist.
Work Step by Step
The general form of a matrix of order $ 3 \times 3$ is:
$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h& i \end{bmatrix}=a(ei-fh) -b(di-fg)+c(dh-eg)$
Now, $det \ A=\begin{bmatrix} 1 & 0 & 0 \\ 3 & 0 & 0 \\ 2 & 5 & 5 \end{bmatrix} \ne 1$
Multiply row $2$ by $\dfrac{1}{3}$ and then subtract row 2 from row 1.
Thus, $A=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 5 & 5 \end{bmatrix} $
Since the matrix is neither invertible nor singular, the inverse of the matrix does not exist.