Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - 10.3 - The Inverse of a Square Matrix - 10.3 Exercises - Page 734: 17

Answer

$\begin{bmatrix} 1 & -\dfrac{1}{2} \\ -2 & \dfrac{3}{2} \end{bmatrix}$

Work Step by Step

$A=\begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ Therefore, the general form of a matrix of order $ 2 \times 2$ is: $\begin{bmatrix} p & q \\ r & s\end{bmatrix}=ps-qr$ Now, $ps-qr=\begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}=6-4=2 \ne 0$ $A^{-1}=\dfrac{1}{2} \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$ Our answer is: $\begin{bmatrix} 1 & -\dfrac{1}{2} \\ -2 & \dfrac{3}{2} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.