Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 9 Quadratic Relations and Conic Sections - 9.7 Solve Quadratic Systems - 9.7 Exercises - Skill Practice - Page 662: 32

Answer

$\left(\frac{7}{3},\frac{23}{3}\right)$ and $\left(\frac{23}{5},-\frac{7}{5}\right)$

Work Step by Step

$x^2-y^2-32x+128=0.....(1)$ $\underline{y^2-x^2-8y+8=0.....(2)}\ +$ (Add both equations to eliminate $x^2$ and $y^2$) $-32x-8y+136=0$ (Divide by $-8$) $4x+y-17=0$ (Write as $y=$) $y=-4x+17.........(3)$ Substituting (3) into (1), $x^2-(-4x+17)^2-32x+128=0$ $x^2-(16x^2-136x+289)-32x+128=0$ $x^2-16x^2+136x-289-32x+128=0$ $-15x^2+104x-161=0$ (Divide by $-1$) $15x^2-104x+161=0$ (Use the factoring method) $(3x-7)(5x-23)=0$ $x=\frac{7}{3}\vee x=\frac{23}{5}$ For $x=\frac{7}{3}$, $y=-4\cdot \frac{7}{3}+17=-\frac{28}{3}+\frac{51}{3}=\frac{23}{3}$ For $x=\frac{23}{5}$, $y=-4\cdot \frac{23}{5}+17=-\frac{92}{5}+\frac{85}{5}=-\frac{7}{5}$ Thus, the solutions are $\left(\frac{7}{3},\frac{23}{3}\right)$ and $\left(\frac{23}{5},-\frac{7}{5}\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.