Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 9 Quadratic Relations and Conic Sections - 9.1 Apply the Distance and Midpoint Formulas - Guided Practice for Examples 3, 4, and 5 - Page 616: 4

Answer

$y=\frac{3}{4}x-\frac{15}{4}$

Work Step by Step

We are given the points $A(-2,1)$ and $B(4,-7)$. a) $\bf{Step\text{ }1}$ Find the midpoint of the line segment using $A(x_1,y_1)=(-2,1)$, $B(x_2,y_2)=(4,-7)$: $$\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)=\left(\dfrac{-2+4}{2},\dfrac{1+(-7)}{2}\right)=(1,-3)$$ b) $\bf{Step\text{ }2}$ Calculate the slope $m$ of $\overline{AB}$: $$m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-7-1}{4-(-2)}=-\dfrac{4}{3}.$$ $\bf{Step\text{ }3}$ Find the slope $m_1$ of the perpendicular bisector: $$\begin{align*} m_1&=-1\\ m_1&=-\dfrac{1}{m_1}=-\dfrac{1}{-\frac{4}{3}}=\dfrac{3}{4}. \end{align*}$$ $\bf{Step\text{ }4}$ Use point-slope form: $$\begin{align*} y-(-3)&=m_1(x-1)\\ y+3&=\dfrac{3}{4}(x-1)\\ y&=\dfrac{3}{4}x-\dfrac{15}{4}. \end{align*}$$ The equation of the perpendicular bisector is $$y=\dfrac{3}{4}x-\dfrac{15}{4}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.