Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 9 Quadratic Relations and Conic Sections - 9.1 Apply the Distance and Midpoint Formulas - Guided Practice for Examples 3, 4, and 5 - Page 616: 3

Answer

$y=\frac{1}{3}x+\frac{20}{3}$

Work Step by Step

We are given the points $A(0,0)$ and $B(-4,12)$. a) $\bf{Step\text{ }1}$ Find the midpoint of the line segment using $A(x_1,y_1)=(0,0)$, $B(x_2,y_2)=(-4,12)$: $$\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)=\left(\dfrac{0+(-4)}{2},\dfrac{0+12}{2}\right)=(-2,6)$$ b) $\bf{Step\text{ }2}$ Calculate the slope $m$ of $\overline{AB}$: $$m=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{12-0}{-4-0}=-3.$$ $\bf{Step\text{ }3}$ Find the slope $m_1$ of the perpendicular bisector: $$\begin{align*} m_1&=-1\\ m_1&=-\dfrac{1}{m_1}=-\dfrac{1}{-3}=\dfrac{1}{3}. \end{align*}$$ $\bf{Step\text{ }4}$ Use point-slope form: $$\begin{align*} y-6&=m_1(x-(-2))\\ y-6&=\dfrac{1}{3}(x+2)\\ y&=\dfrac{1}{3}x+\dfrac{20}{3}. \end{align*}$$ The equation of the perpendicular bisector is $$y=\frac{1}{3}x+\frac{20}{3}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.