Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 9 Quadratic Relations and Conic Sections - 9.1 Apply the Distance and Midpoint Formulas - 9.1 Exercises - Problem Solving - Page 619: 55

Answer

See below

Work Step by Step

Call $A(-220,220); B(200,40)$ and $O(0,0)$ Find the midpoint of the line segment $M_1=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})=(\frac{-220+0}{2},\frac{220+0}{2})=(-110,110)\\M_2=(\frac{200+0}{2},\frac{40+0}{2})=(100,20)$ Find m: $m_1=\frac{y_2-y_1}{x_2-x_1}=-1\\m_2=\frac{1}{5}$ Calculate the slope of the perpendicular bisector: $m_1=1\\m_2=-5$ Use point-slope form: $y_1=x+220\\x_2=-5x+520$ Find the intersection: $y_1=y_2\\x+220=-5x+520\\6x=300\\x=50$ Find y: $y=50+220=270$ Find the distance from O: $d=\sqrt (0-50)^2+(0-270)^2\approx274.6$ The diameter is $2\times274.6\approx549.2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.