Answer
$x<-3$
Work Step by Step
Rewrite the inequality so that the one side is zero.
$\frac{x-5}{x+3}>1$ (Substract both sides with 1)
$\frac{x-5}{x+3}-1>0$
Set $y=\frac{x-5}{x+3}-1$ and create a table of values of $x$ and $y$ for some values of $x$.
The solution to the inequality is the values of $x$ which satisfies $y>0$.
$\begin{matrix}
\hline
x&y\\
\hline
-5&4.0\\
-4&8.0\\
-3&\text{Error}\\
-2&-8.0\\
-1&-4.0\\
\hline
\end{matrix}$
In the table, we get $y>0$ for $x<-3$ and $y<0$ for $x>-3$.
Thus, the solution to the inequality is $x<-3$.