Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 8 Rational Functions - 8.5 Add and Subtract Rational Expressions - 8.5 Exercises - Skill Practice - Page 587: 40

Answer

See below

Work Step by Step

Given $$\frac{3x^{-2}+(2x-1)^{-1}}{\frac{6}{x^{-1}+2}+3x^{-1}}$$ Multiply by $x^2$ $$\frac{3x^{-2}+(2x-1)^{-1}}{\frac{6}{x^{-1}+2}+3x^{-1}}.\frac{x^2}{x^2}\\=\frac{3+(2x-1)^{-1}x^2}{\frac{6x^2}{x^{-1}+2}+3x}\\=\frac{3+\frac{x^2}{2x-1}}{\frac{6x^2}{\frac{1}{x}+2}+3x}\\=\frac{3+\frac{x^2}{2x-1}}{\frac{6x^3}{2x+1}+3x}$$ Multiply by $(2x-1)(2x+1)$ $$\frac{3+\frac{x^2}{2x-1}}{\frac{6x^3}{2x+1}+3x}.\frac{(2x-1)(2x+1)}{(2x-1)(2x+1)}\\=\frac{3(2x-1)(2x+1)+x^2(2x+1)}{6x^3(2x-1)+3x(2x-1)(2x+1)}\\=\frac{3(4x^2-1)+2x^3+x^2}{12x^4-6x^3+3x(4x^2-1)}\\=\frac{2x^3+13x^2-3}{12x^4+6x^3-3x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.