Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 8 Rational Functions - 8.5 Add and Subtract Rational Expressions - 8.5 Exercises - Skill Practice - Page 587: 36

Answer

$\frac{x-4}{12x^2-84x+72}$

Work Step by Step

All fractions in the denominator have the least common denominator (LCD) of $3(x-1)(x+1)(x-4)$. Simplify the complex fraction: $\frac{\frac{1}{3x^2-3}}{\frac{5}{x+1}-\frac{x+4}{x^2-3x-4}}=\frac{\frac{1}{3(x+1)(x-1)}}{\frac{5}{x+1}-\frac{x+4}{(x+1)(x-4)}}$ (Multiply the numerator and denominator by the LCD) $=\frac{\frac{1}{3(x+1)(x-1)}}{\frac{5}{x+1}-\frac{x+4}{(x+1)(x-4)}}\times \frac{3(x-1)(x+1)(x-4)}{3(x-1)(x+1)(x-4)}$ $=\frac{x-4}{5\times 3(x-1)(x-4)-(x+4)\times 3(x-1)}$ (Simplify the denominator) $=\frac{x-4}{15x^2-75x+60-(3x^2+9x-12)}$ $=\frac{x-4}{12x^2-84x+72}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.