Answer
See below
Work Step by Step
Given: $f(x)=x^3+2x^2+2i-2;-1+i$
Apply the property: $(a+b)^3=a^3+3a^2b+3ab^2+b^3$
For $f(-1+i)\\=[(-1)^3+3(-1)^2(i)+3(-1)(i)^2+(i)^3]-2[(-1)^2+2(-1)(i)+(i)^2]+2(-1+i)-2\\=2+2i-4i+2i-2\\=0$
Thus, $-1+i$ is a zero of the given polynomial.
For $f(-1-i)\\=[(-1)^3+3(-1)^2(-i)+3(-1)(-i)^2+(-i)^3]-2[(-1)^2+2(-1)(-i)+(-i)^2]+2(-1-i)-2\\=2-2i+4i+2i-2\\=4i$
Thus, $-1-i$ is not a zero of the given polynomial.