Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 5 Polynomials and Polynomial Functions - 5.7 Apply the Fundamental Theorem of Algebra - 5.7 Exercises - Skill Practice - Page 385: 57

Answer

See below

Work Step by Step

Given: $f(x)=x^3+2x^2+2i-2;-1+i$ Apply the property: $(a+b)^3=a^3+3a^2b+3ab^2+b^3$ For $f(-1+i)\\=[(-1)^3+3(-1)^2(i)+3(-1)(i)^2+(i)^3]-2[(-1)^2+2(-1)(i)+(i)^2]+2(-1+i)-2\\=2+2i-4i+2i-2\\=0$ Thus, $-1+i$ is a zero of the given polynomial. For $f(-1-i)\\=[(-1)^3+3(-1)^2(-i)+3(-1)(-i)^2+(-i)^3]-2[(-1)^2+2(-1)(-i)+(-i)^2]+2(-1-i)-2\\=2-2i+4i+2i-2\\=4i$ Thus, $-1-i$ is not a zero of the given polynomial.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.