Answer
$$\frac{2}{3a^2b^2}$$
Work Step by Step
We know the following rules of exponents. The list of names is on page 330.
$$ (1) \ a^m\cdot a^n = a^{m+n} \\ (2) \ (ab)^m =a^mb^m \\ (3) \ (a^m)^n =a^{mn} \\ (4)
\ a^{-m} = \frac{1}{a^m} \\ (5)\ \frac{a^m}{a^n} =a^{m-n} \\ (6) \ a^0=1 \\ (7) \ (\frac{a}{b})^m =\frac{a^m}{b^m}$$
Thus, using these properties, we find:
$$\frac{2b^{-4}}{3b^{-2}a^{5-3}} \\ \frac{2}{3a^2b^{-2-\left(-4\right)}} \\ \frac{2}{3a^2b^2}$$