Answer
$$\frac{s^6}{125t^{12}}$$
Work Step by Step
We know the following rules of exponents. The list of names is on page 330.
$$ (1) \ a^m\cdot a^n = a^{m+n} \\ (2) \ (ab)^m =a^mb^m \\ (3) \ (a^m)^n =a^{mn} \\ (4)
\ a^{-m} = \frac{1}{a^m} \\ (5)\ \frac{a^m}{a^n} =a^{m-n} \\ (6) \ a^0=1 \\ (7) \ (\frac{a}{b})^m =\frac{a^m}{b^m}$$
Thus, using these properties, we find:
$$\frac{1}{\left(5s^{-2}t^4\right)^3} \\ \frac{1}{\frac{5^3t^{12}}{s^6}}\\ \frac{s^6}{5^3t^{12}} \\ \frac{s^6}{125t^{12}}$$