Answer
See below
Work Step by Step
Let $-x^2+4x=y$
Since the area is bounded below by $y=0$, we have: $-x^2+4x=0\\\rightarrow x^2-4x=0\\
\rightarrow x(x-4)=0\\
\rightarrow x=0 \land x=4$
The base will be $4-0=4$
The axis of symmetry is $x=-\frac{b}{2a}=-\frac{4}{2(-1)}=2$
Substitute back: $y=-(2)^2+4.2=4$
Hence, the area of the region: $A=\frac{2}{3}(4)(4)=\frac{32}{3}\approx 10.667$