Answer
$c=-0.5i$ does belong to the Mandelbrot set.
Work Step by Step
Let $f (z)= z ^2 +(-0.5i)$
$z_0=0$
$|z_0|=0$
$z_1=f(0)=0^2+(-0.5i)=-0.5i$
$|z_1|=\frac{1}{2}$
$z_2=f(-0.5i)=(0.5i)^2+(-0.5i)=-0.25-0.5i$
$|z_2|=\frac{\sqrt 5}{4}$
$z_3=f(-0.25-0.5i)=(-0.25-0.5i)^2+(-0.5i)=-\frac{3}{16}-0.25i$
$|z_3|=\frac{5}{16}$
$c=-0.5i$ does belong to the Mandelbrot set.