Answer
$c=-1+i$ does belong to the Mandelbrot set.
Work Step by Step
Let $f (z)= z ^2 +(-1)$
$z_0=0$
$|z_0|=0$
$z_1=f(0)=0^2+(-1)=-1$
$|z_1|=1$
$z_2=f(-1)=(-1)^2+(-1)=0$
$|z_2|=0$
$z_3=f(0)=(0)^2+(-1)=-1$
$|z_3|=1$
$z_4=f(-1+3i)=(-1+3i)^2+(-1+i)=-9-5i$
$|z_4|=\sqrt 81+25=\sqrt 106$
$c=-1+i$ does belong to the Mandelbrot set.