Answer
$-(\cos \theta+\sin \theta)$
Work Step by Step
Use the Identity $\cos 2 \theta =\cos^2 \theta-\sin^2 \theta$
Thus, we have
$ \dfrac{ \cos 2 \theta}{ \sin \theta -\cos \theta}=\dfrac{\cos^2 \theta-\sin^2 \theta}{\sin \theta- \cos \theta}$
or, $= \dfrac{ (\cos \theta -\sin \theta)(\cos \theta +\sin \theta)}{\sin \theta- \cos \theta}$
or, $=-(\cos \theta+\sin \theta)$