Answer
$\dfrac{ 2 \tan \theta}{(1+\tan \theta) }$
Work Step by Step
Use the Identity $\tan 2 \theta =\dfrac{ 2 \tan \theta}{1-\tan^2 \theta}$
Thus, we have
$(1-\tan \theta) \tan 2 \theta=(1-\tan \theta) \times \dfrac{ 2 \tan \theta}{1-\tan^2 \theta}$
or, $=(1-\tan \theta) \times \dfrac{ 2 \tan \theta}{(1-\tan \theta) (1+\tan \theta) }$
or, $=\dfrac{ 2 \tan \theta}{(1+\tan \theta) }$