Answer
$$\tan \left(x\right)$$
Work Step by Step
Simplifying the expression using the sum and difference formulas, we find:
$$\frac{\sin \left(x-2\pi \right)}{\cos \left(x-2\pi \right)} \\ \frac{-\cos \left(x\right)\sin \left(2\pi \right)+\cos \left(2\pi \right)\sin \left(x\right)}{\cos \left(x\right)\cos \left(2\pi \right)+\sin \left(x\right)\sin \left(2\pi \right)} \\ \frac{\sin \left(x\right)}{\cos \left(x\right)} \\\tan \left(x\right) $$