Answer
\[\frac{n^2_{2}-n^2_{1}}{n^2_{2}}\sin^2\theta_{1} = \frac{n^2_{2}-n^2_{1}}{n^2_{1}}\cos^2\theta_{1}\]
Work Step by Step
From (a),
\[\frac{n^2_{1}}{n^2_{2}}\sin^2\theta_{1} +\frac{n^2_{2}}{n^2_{1}}\cos^2\theta_{1} = 1\]
Let us rewrite the right hand side $1$ as $\sin^2\theta_{1}+\cos^2\theta_{1}$.
\[\implies \frac{n^2_{1}}{n^2_{2}}\sin^2\theta_{1} +\frac{n^2_{2}}{n^2_{1}}\cos^2\theta_{1} = \sin^2\theta_{1}+\cos^2\theta_{1} \]
Simplifying further
\[\frac{n^2_{1}}{n^2_{2}}\sin^2\theta_{1}-\sin^2\theta_{1} = \cos^2\theta_{1}-\frac{n^2_{2}}{n^2_{1}}\cos^2\theta_{1}\]
\[\implies \frac{n^2_{1}-n^2_{2}}{n^2_{2}}\sin^2\theta_{1} = \frac{n^2_{1}-n^2_{2}}{n^2_{1}}\cos^2\theta_{1}\]
\[\implies \frac{n^2_{2}-n^2_{1}}{n^2_{2}}\sin^2\theta_{1} = \frac{n^2_{2}-n^2_{1}}{n^2_{1}}\cos^2\theta_{1}\]
which is the required answer.