Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 14 Trigonometric Graphs, Identities, and Equations - 14.3 Verify Trigonometric Identities - 14.3 Exercises - Problem Solving - Page 930: 44a

Answer

\[n_{1}\sin\theta_{1} = n_{2}\sin\theta_{2}\]

Work Step by Step

\[\frac{n_{1}}{\sqrt{\cot^2 \theta_{1}+1}} = \frac{n_{2}}{\sqrt{\cot^2 \theta_{2}+1}}\] where we have that $\cot\theta_{1} = \frac{\cos\theta_{1}}{\sin\theta_{1}}$ and $\cot\theta_{2} = \frac{\cos\theta_{2}}{\sin\theta_{2}}$. \[\implies \frac{n_{1}}{\sqrt{\frac{\cos^2\theta_{1}}{\sin^2\theta_{1}}+1}} = \frac{n_{2}}{\sqrt{\frac{\cos^2\theta_{2}}{\sin^2\theta_{2}}+1}}\] \[\implies \frac{n_{1}}{\sqrt{\frac{\cos^2\theta_{1}+\sin^2\theta_{1}}{\sin^2\theta_{1}}}} = \frac{n_{1}}{\sqrt{\frac{\cos^2\theta_{2}+\sin^2\theta_{2}}{\sin^2\theta_{2}}}}\] where $\cos^2\theta_{1}+\sin^2\theta_{1} = 1$ and $\cos^2\theta_{2}+\sin^2\theta_{2} = 1$. \[\implies n_{1}\sin\theta_{1} = n_{2}\sin\theta_{2}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.