Answer
See below
Work Step by Step
We are given: $B,b,c$
Use law of sines to find, $\frac{\sin C}{c}=\frac{\sin B}{b}\\\sin C=\frac{\sin B}{b}\times c\\C=\arcsin(\frac{\sin B}{b}\times c)\\C\approx44.32^\circ $
Since the sum of the angles of a triangle is 180 degrees:
$$A+B+C=190^\circ\\C=180-A-B\\=180-104-44.32=31.68^\circ$$
Find a: $\frac{a}{\sin A}=\frac{c}{\sin C}\\a=\frac{c}{\sin C}\times \sin A\\A=(\frac{18}{\sin 44.32 ^\circ}\times \sin 31.68^\circ)\\a\approx 13.53^\circ$