Answer
\begin{align*}
&\sin\theta = \frac{1}{\sqrt{2}}, \enspace \cos\theta = \frac{1}{\sqrt{2}}, \enspace \tan\theta = 1 \\
&\csc\theta = \sqrt{2}, \enspace \sec\theta = \sqrt{2}, \enspace \cot\theta = 1
\end{align*}
Work Step by Step
Let $x$ be the length of unknown side of right angled triangle. According to Pythagorean theorem, $5^2+x^2 = 50$
\[\implies x^2 = 25\]
\[\implies x = 5\]
\begin{align*}
&\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}} \enspace \cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}} \enspace \tan\theta = \frac{\text{opposite}}{\text{adjacent}} \\
&\csc\theta = \frac{\text{hypotenuse}}{\text{opposite}} \enspace \sec\theta = \frac{\text{hypotenuse}}{\text{adjacent}} \enspace \cot\theta = \frac{\text{adjacent}}{\text{opposite}}
\end{align*}
\begin{align*}
\implies &\sin\theta = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}}, \enspace \cos\theta = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}}, \enspace \tan\theta = 1 \\
&\csc\theta = \sqrt{2}, \enspace \sec\theta = \sqrt{2}, \enspace \cot\theta = 1
\end{align*}