Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.1 Use Trigonometry with Right Triangles - Guided Practice for Examples 1 and 2 - Page 853: 2

Answer

\begin{align*} &\sin\theta = \frac{15}{17} \enspace \cos\theta = \frac{8}{17} \enspace \tan\theta = \frac{15}{8} \\ &\csc\theta = \frac{17}{15} \enspace \sec\theta = \frac{17}{8} \enspace \cot\theta = \frac{8}{15} \end{align*}

Work Step by Step

Let $x$ be the length of unknown side of right angled triangle. According to Pythagorean theorem, $15^2+x^2 = 17^2$ \[\implies x^2 = 17^2-15^2\] \[x^2 = 64\] \[x = 8\] \begin{align*} &\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}} \enspace \cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}} \enspace \tan\theta = \frac{\text{opposite}}{\text{adjacent}} \\ &\csc\theta = \frac{\text{hypotenuse}}{\text{opposite}} \enspace \sec\theta = \frac{\text{hypotenuse}}{\text{adjacent}} \enspace \cot\theta = \frac{\text{adjacent}}{\text{opposite}} \end{align*} \begin{align*} \implies &\sin\theta = \frac{15}{17} \enspace \cos\theta = \frac{8}{17} \enspace \tan\theta = \frac{15}{8} \\ &\csc\theta = \frac{17}{15} \enspace \sec\theta = \frac{17}{8} \enspace \cot\theta = \frac{8}{15} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.