Answer
$2n \sin (\dfrac{180}{n})^{\circ}$
Work Step by Step
Here, $\theta=(\dfrac{1}{n}) \times 360^{\circ}=(\dfrac{360}{n})^{\circ}$
$\sin \theta/2=\dfrac{x}{1}$
This gives: $\sin \dfrac{(\dfrac{360}{n})^{\circ}}{2}=x$
$\implies x=\sin (\dfrac{180}{n})^{\circ}$
Now, the perimeter of the n-sided polygon is:
$P=n (2x)= 2n \sin (\dfrac{180}{n})^{\circ}$